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We have found that the reflected wave that is created by a right-going solitary wave 
as it  travels in a region of slowly changing depth does not satisfy Green’s law. The 
amplitude of the reflected wave is constant along left-going characteristics rather than 
proportional to the negative fourth root of depth. This new fmding allows us to satisfy 
the mass-flux conservation laws to leading order and establishes that the perturbed 
Korteweg-de Vries equation is a consistent approximation for the right-going profile. 

1. Introduction 
The changes that occur in a solitary. wave as it propagates in a region of slowly 

varying depth (figure 1) have been the subject of many investigations beginning with 
Boussinesq in 1872. By applying the principle of conservation of energy, Boussinesq 
was able to describe the slow change in wave amplitude, but he also recognized that, 
even allowing for this modulation, the mass flux (also referred to as momentum ; Miles 
1979) was not conserved. Much later, the success of the Korteweg-de Vries (1895) 
equation as a model for describing the unidirectional propagation of long, low- 
amplitude surface waves, together with the development of sophisticated perturbation 
techniques, prompted renewed efforts on this problem beginning about ten years ago. 
Johnson (1973~)  and Kakutani (197 1 ) derived the appropriately perturbed Korteweg- 
de Vries equation; Johnson (1973b), Grimshaw (1970,’1971) and Leibovich & Randall 
(1973) made valuable and partially successful attempts to understand the slow 
changes which occur on the flow over long distances in which the depth changes by 
an order-one factor (the region 0 < f < f, in figure 1). The difficulty they encountered 
was that the slowly changing solitary wave (its amplitude changes in inverse 
proportion to the local depth) cannot by itself satisfy the conservation of mass flux 
requirement of the perturbed Korteweg-de Vries equation. A secondary structure 
(Kaup & Newell 1978; Newell 1978; Karpman t Maslov 1977) is created, a shelf which 
extends between the solitary wave and that position to which infinitesimal disturbances 
would have travelled from the initial point at which the depth first begins to change. 
To leading order, the shelf may be treated by a linear model; it is a wave whose 
amplitude on creation (at the immediate rear of the solitary wave) may be calculated 
from the amount by which the slowly changing solitary wave fails to satisfy the local 
conservation of m w  flux requirement for unidirectional flow; its subsequent 
evolution (Newell 1978; Miles 1979; Knickerbocker & Newell 1980) is described by 
Green’s law; namely along a right-going characteristic the product of the shelf 
amplitude and the fourth root of the local depth is constant. 
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9 = Dn + N ( i ,  f )  

f 
2 = 0  2 =*  

FIQURE 1. Physical system being considered, where N(2,  fi  is, the dimensional elevation, U(2, i) is 
the dimensional horizontal velocity, 2 is space coordinate, t is time and D(2) is the depth. For 
2 < 0, D(2) = Do, and for 2 > 2*, D(2) = D,. 

However, the conservation of mass flux law for the perturbed Korteweg-de Vries 
equation (pas: Df(2) U(2 ,  i)di is independent of 2 ;  i is the time, D(2) is the local 
depth, U(b, f) thexorizontal velocity, p the density, g the acceleration due to gravity, 
and Do the constant local depth for 2 < 0) is not the same as that for the full 
shallow-water-wave equations for which s" pD(2) U(2 ,  8) di is independent of 6. This 
is because the changing depth causes a waTe of reflection; although its amplitude is 
very small, over distances in which the depth changes by order one, the mass flux 
associated with it will be of the same order as that associated with the right-going 
component of the flow. The first attempt to calculate the reflected wave was made 
by Peregrine (1967), who computed the initial amplitude of the reflected wave, a 
result which is correct only for short times and distances. Recently the role of both 
the right- and left-going shelves was treated by Miles (1979). He used the same method 
by which the amplitude of the right-going shelf in the immediate rear at  the solitary 
wave is calculated to calculate the amplitude at creation of the left-going disturbance ; 
namely in the lee of the right-going disturbance (the solitary wave together with its 
trailing shelf ), the amplitude of the left-going disturbance is computed (as we shall 
do in $2) from the amount by which the mass flux associated with the perturbed 
Korteweg-de Vries equation fails to satisfy the lopal conservation of mass flux for 
the full two-directional shallow-water-wave equations. Miles then used Green's law 
to describe the subsequent evolution of the left-going disturbance and found that the 
law of conservation of momentum for the two-directional flow remained unsatisfied. 
Miles then concluded that 'The. . .results suggest that solutions. . .such as that for 
a slowly varying solitary wave. . . , must be regarded with some caution. ' 

It is the purpose of this short note to correct this failure and to give the complete 
picture (in the sense that we describe all flow components which carry order-one mass 
flux) of what happens when a solitary wave 
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where n(2, f) = &U($, i!)/gi is the surface elevation, propagates into a region where 
the depth changes slowly from one constant depth Do to another D, (the local depth 
for z > zf). The results are aa follows. 
(a) The solitary-wave horizontal velocity, amplitude and speed undergo a slow 

modulation; the first is inversely proportional to the depth to the three-halves power. 
That is, 

Us(&, i!) = hiDie&D+sech2 (roR)+O(ecr), 

where 

The solitary-wave component of the solution carries a mass flux of ho pdD, D, where 
the small parameter e!qo is found from the amplitude Doe of the incoming solitary 
wave (1.1). 

(b) A right-going shelf which stretches from 8, = 0 (where 

8 ,= - t  (“)’ - + Joxe”” 

DO 
is the characteristic associated with the linearized equations and 8, = 0 begins at 
the point where depth begins to change) to the solitary wave will change according 
to Green’s law. The horizontal velocity of the shelf is given by 

where & corresponds to the position of the solitary wave. The change in the depth 
with respect to the spatial variable 2 is of order e h .  The mass flux associated with the 
right-going shelf is ho pdao! -ho &Do D. The connection between the solitary 
wave and the shelf can be established when one computes the correction to  the 
amplitude and horizontal velocity of the solitary wave. When this calculation is 
performed one fhds that the correction does not tend to zero in the lee of the solitary 
wave, but tends to -33D3.D5/qo(D0s)f, a finite constant (Leibovich & Randall 1973). 
This constant is precisely the value that the shelf takes on when evaluated right 
behind the solitary wave (Knickerbocker 1984). 

(c)  A left-going shelf of reflection, which stretches from 8- 

is the left-going characteristic associated with the linearized 
is added to the solution in order to compensate for the mass flux discrepancy. It does 
not satisfy Green’s law, but rather the amplitude, and equivalently the product of the 
local depth and the horizontal velocity, is constant along left-going characteristics. 
The horizontal velocity of the reflected wave is given by 

= 0, where 

equations, to 8, = 0, 

UJ2,  f) = $odD% D,Df(&)D-’(&) +O(dW), 

where (2,t“) is a point in the region boundedl by 8, = 0 and 8- = 0. The mas8 flux 
associated with this component is ho pdD& -ao This discontinuity along 
8 ,  = 0 between the left- and right-going flow is resolved by incorporating the 
third-derivative linear term, which becomes important in this region, into (2.8). The 
transition takes place in a distance of cd measured in the units of the solitary wave 
width and is given by the integral of the Airy function (Knickerbocker & Newel1 
1980). 
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The total mass flux, whicb is found by adding the mass flux due to each portion 
of the solution, is hopdD!Dt and is equal to the flux of all right-going disturbances 
at the point after which no further depth changes and therefore no further reflection 
occurs. In  particular, we note that as D, becomes small the total mass flux approaches 
zero. In that case, practically all the water associated with the incoming wave is 
reflected and very little reaches the shore. All our results are confirmed by numerical 
experiments reported in $3. 

2. Analysis 
The shallow-water equations that describe the total flow (the propagation of a 

solitary wave and its trailing and reflected shelves) are, in non-dimensional 
coordinates, 

nt + (hu), = -s(un), +- h3u,,, , (2.1) 
€ 

6 

8 
ut + n, = - EUU, + - h2uXzt. (2.2) 2 

The equations are respectively the kinematic boundary condition for the free surface 
and the horizontal momentum equation. In (2.1) and (2.2), n(z ,  t )  (= N/D, ) ,  
u(x ,  t )  ( = U/e(gD,)f) ,  x ( = 2d/Do) and t (= l(ge/D,):) are the non-dimensional eleva- 
tion, horizontal velocity to leading order (U = u+!jeh2u,,, where ii is the horizontal 
velocity at  the surface), horizontal distance and time variables respectively. The 
non-dimensional depth h(s)  = D(2) /D0  changes from unity to DJD, in a distance 
gf = O(l/&a),  where 0 < E -4 a -4 1, which is long with respect to the width of the 
solitary wave and the length of the right-going shelf. The small parameter B is 
related to the average slope of D(2).  Note that in dimensionless coordinates the 
amplitude of the solitary wave is order one, its width is order one; the amplitude of 
the right-going trailing shelf is order 6, its length is order l/a (figure 2) ; the amplitude 
of the reflected wave is order aa  and its length is order l / w  (figure 3). To leading 
order in E, the conservation law for the mass flux (the amount of water crossing a 
fixed station for all time) is, from (2.1), 

2. rco 

2 J h(x)  u(x ,  t )  dt = 0. 
ax 

We may look for solutions n+ and u+ of (2.1) and (2.2) that depend on the right-going 
and slowly on X ( = ex). In this situation, one characteristic 0, = - t + j :  d r / [h ( r )$  

finds that, to leading order, 
n+ = A h + ,  (2.4) 

(:+hi:) (hiu,) = E [  - ~ h t u + ~ - ~ h ~ -  au+ 

and 

(p + hf-) (hh+) = E [ - %h-!lz+% - ihy - an+ a21- 
(2.5) 

Note that the linear portions of (2.5) and (2.6) are Green’s law ; hb+ and h h +  are 
constants along the right-going characteristics 0+ = - t + jf dr/ [h(r ) ! .  In terms of 8 ,  
and X, the transformation of n+(x, t )  to n(0+, X )  yields the perturbed Korteweg- 
de Vries equation 

nx+fh-%m, + f k h b ,  
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FIGURE 2. The evolution of a portion of the right-going shelf. The point (2, t )  is the point of creation 
and the dashed line (- - - -) corresponds to the positive characteristic pclssing through (E ,  i) and 
(z, 4. 

and similarly for u(8+, X )  : 

UX +ihh-'uue+ + ih&+e+e+ 

From (2.8) we find that 

hi(X) u+(8+, X )  do, = 0. 

In order to solve (2.5) with the initial boundary conditions 

n+(O, t )  = u+(O, t )  = hisechz (qot) (t 2 0) ,  

n+(z, O)/hf = u+(z, 0 )  = 0 (z> 0) ,  

we assume a solution of the form 

n+(z, t )  = n,(z, t )  +il,(z, t ) ,  u+(z, t )  = u,(z, t )  +E+(z, t ) ,  (2.10) 

where n,(z,t) and u,(z,t) are the amplitude and velocity of the solitary wave 
respectively, and iZ+(z,t) and ii+(z,t) denote the amplitude and velocity of the 
right-going shelf respectively (note that the shelf is order CT in magnitude and non-zero 
only between 8+ = 0 and 8+ = 8, the position of the solitary wave (figure 2 ) ) .  
To find the changes in the solitary wave (n,(z, t ) ,  us(%, t ) ) ,  we assume a leading-order 

solution of the form 

UJZ,  t )  = us(e+, x) = A ( X )  secha { w ( x )  (e+ - 8)). 
From (2.8) we find that 

A(z)  = @ w ~ ( X ) ,  8, = $ih+(X). (2.11a) 
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From the conservation of energy, 
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we find that 
(2.1 1 b)  

By combining ( 2 . 1 1 ~ )  and ( Z . l l b ) ,  we find that A ( X )  = &ih-!(z) and 

Therefore t )  = %pfsechZ (?#Ioh+(e+ -a)),  (2.12 a) 

w(x) = ?#Ioh-3(X). 

and from (2.4) the amplitude of the solitary wave is 

n,(s, t )  = %;h-i=cv (roh-t(e+ -a)) 
The mass flux associated with the component is 

%(XI = %oh(4. (2.12 b) 

Using (2.4) and approximating the 2-derivatives on the right-hand side of (2.5) with 

(2.13) 
m 

t-derivatives, we find that 

&JFm hi(x) u+(x, t )  dt = 0. 

Therefore, under the assumptions made in (2.10), we have 

(2.14) 

where t = i ( x )  and t = tJx) correspond to 8,  = 8 and 8+ = 0 respectively (figure 2). 
Since i i+(x,  t) is assumed small and therefore changes according to the linear portion 
of (2.5), we have, upon differentiating the left-hand side of (2.14), 

- 3h,(Z) hqZ)  
U+(Z, t)  = 9 

9 0  

where we have used the fact that h&+ is constant and where (5, i) belongs to the path 
of the solitary wave (figure 2). From Green’s law, which is valid because the change 
in a+ is fast with respect to the change in h(z) ,  

-3 

9 0  
ii+(z, t)  = ---h-qz) hi@) h,(Z), (2.15) 

for any ( z , t )  lying between the solitary-wave path 8,  = 6 and 8 ,  = 0,  and @,i) 
is the point at which the right-going characteristic through (x,t) meets 8, = 8 
(figure 2). The amplitude of the shelf can be found from (2.4), yielding 

-3  

9 0  
Z+(x ,  t )  = -h-!(x) hqx) h,(Z). 

A little calculation (Knickerbocker & Newell 1979) shows that the mass flux E+ 
associated with the shelf component of the flow is 

m 
E+(x) = J-, h(x)  U+(x ,  t )  dt = koG(4-%oh(x), (2.16) 

which, when added to the mass flux (2.12) associated with the solitary wave, gives 
h o h f ( x ) ,  which satisfies the equation for the right-going flux, but not (2.3), the 
total-mass-flux requirement. 
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I 
x - 0  x = X I  

hf 

h0 

FIGURE 3. This figure shows the evolution of a portion of the left-going reflection. The point (%, to) 
is the point in space-time where the reflection measured at (x,t) is created. The negative 
characteristic 8- = t +so” h f ( r )  dr. The dashed line (- - - -) corresponds to the negative charac- 
teristic pwing through (%,to) and (5, t ) .  

In order to compensate for this discrepancy, it is necessary to add a left-going 
component n-(z,t) andu-(x,t) to the solution. Because of their very small amplitudes, 
n-(z, t) and u-(z, t )  will satisfy the linearized versions of (2.1) and (2.2). The reflection 
will be non-zero in the region bounded by 8- = 0 and 8, = 0 (figure 3). We first 
calculate their values along 8+ = 0 using the local conservation of mass flux. From 
(2.3) we have 

”s (h ( z )  u+(x, t )  +h(x) u-(x, t ) )  dt = 0. 
03 

ax -03 

Therefore 

h ( ~ )  u-(z, t )  dt = -- a Sm h(z)u+(x,t)dt 
ax -03 

a 03 

= --hi@) I M(x) u+(x, t) dt 
ax -a 

= -%oh+(x) h,(z) (z c Z). 

When the solitary wave is at (&to)  (figure 3), the reflection contributed by the 
solitary wave up to that point will be non-zero from t = to(x), which is the right-going 
characteristic 8+ = 0, and t = t-(x), which is the left-going characteristic initiated 
at  (5, to) .  Therefore 

and 

(2.17) 
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We differentiate the integral in (2.17), add and subtract h(z)u-(x,t,) and use 
(h(x) u-(x, t ) ) ,  = -n-t to find that 

In particular, (2.18) holds as x tends to Z, whence t- tends to to. This is how Miles 
(1979) calculated u-(Z, to) .  However, (2.18) yields two pieces of information. First, 

up@, to)  = k,h+(Z) hz(Z). 

(n- + h k ) I , -  = (n- + h k ) I t 0 ,  

Secondly, we find that 
(2.19) 

(2.20) 

€or any t- ,  and therefore n- + hiu- is independent of time at any fixed x, that is 

- a (n- + h k )  = 0. (2.21) 
at 

In order to calculate u-(x,t) for points (x,t) (figure 3) in the region bounded by 
6- = 0 and 8+ = 0, Miles applied Green’s law to (2.19) ; that is, he took hh- constant 
along left-going characteristics. He also took h!n- equal to - hiu- to leading order. 
However, this leads to the total mass flux being %oF”l In (h,/h) -bolh, which is clearly 
not constant. What is wrong? 

It is incorrect to assume that Green’s law holds for left-going disturbances. Green’s 
law only holds when the depth h(z )  changes slowly with respect to the gradient of 
the disturbances in question. On the other hand, the reflected wave, by the very 
manner in which it is created, has a horizontal gradient that is of the same order as 
the gradient of the depth. However, (2.21), 

n-,+h:u-, = 0, 

together with n-t + (hu-), = 0 gives us that 

and 

(2.22 a)  

(2.22b) 

which means that hu- (and also n-) is constant along left-going characteristics. Thus 
for a point (x,t) in the region bounded by 8- = 0 and 6+ = 0 the velocity of the 
reflected wave is 

u-(x, t )  = $yoh,(Z) h-:(Z) h-’(x). (2.23) 

The reflected mass flux measured along a constant x (x = x,, figure 4), can be 
found by integrating the following expression : 

h(x,) u-(xc, t )  dt. (2.24) 
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I 
x = o  x =xy 

hf 

h0 

FIGURE 4. This figure shows the evolution of a portion of the left-going reflection. The point 
(xp, tO(xp)) lies along 8, = 0 and corresponds to the rear position of the right-going shelf. The line 
x = x, corresponds to the station a t  which the reflected mass flux is to be measured and (x,, to(s,)) 
and (xc, t-(x,)) .  The point (x, tk) is the intersection of the left-going characteristic through (q,, t )  and 
e, =o.  

But, as the right-going flow travels from x = x, to x = xp, the reflected mass flux will 
be non-zero only between (x,, to@,)) (which lies on the right-going characteristic 
8, = 0) and'@,, t - (x , ) )  (which is the left-going characteristic initiated at (xp, t o (xp ) ) .  
Therefore, 

t-(2,) 

h(s,) u-(x,, t )  dt. I L t o ( z c )  

53 

h(z,) u-(x,, t )  dt = 

We will convert this integration in t from to@,) to t-(x,)  to an integration from x = 2, 
to x p  along 8, = 0. From (2.22a), 

h(xc) u-(xc,  t ,  = h(x) u-(x, t k ) ,  

where (x, t k )  is the point of intersection of 8, = 0 and the left-going characteristic 
propagating through (xc, t ) .  
This implies that 

tk + h f ( r )  dr = t + IoZc h f ( r )  dr, 
0 

or 

t = tk+Ioz hf(r)dr-IOzC hb(r )dr .  

Also at the point (2, t k ) ,  we have that 

This gives us a relationship between t and x. From (2.25) and (2.26) we have 

(2.25) 

(2.26) 

t = 2 Ioz h-i(r) dr- IoZc h f ( r )  dr, 
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dt = 2h-i(z) dz. 

Therefore the reflected mass flux is (figure 4) 
t - (x , )  

to (xc)  

t-(x,) 

O(XC) 

h(x,) u&,, t )  dt = 1 c h(x,) u-(x,, t )  dt 

h(x) u-(x, tk) dt, 
= 1 

(2.27) 

or from (2.19) and (2.27) 
XP 

= $vo j h-f dh 
xc 

Once the solitary wave has reached a constant depth (z > zf) the mass flux associated 
with the reflected wave along any 2 is 

W 

m-(z) = h(x)u-(x, t)dt = $ohi-$ohk (2.28) J- m 

Adding this result to (2.12) and (2.16), the flux associated with the right-going 
component, we obtain for the total flux 

(2.29) 

which is a constant and equal to the flux of the right-going component once the 
solitary wave has reached the point at which the depth again becomes constant. 

In order to calculate the amplitude n- of the reflected wave, we solve the linear 
Goursat problem defined as 

n-,+ (hu-), = 0, 

u-t + n-, = 0, I 
u-(t9+ = 0) = koh-i(z)-(x). 

dx dh I (2.30) 

U-(d- = 0) = 0, 

n-(t9- = 0) = 0. 

The reason that n- is not equal to - hiu- (in a manner analogous to n+ = h&+ for 
the right-going flow (2.4)) is that the premise by which the latter is derived neglects 
the smaller term hxu+. One cannot make this assumption for the reflected flow. 

In $3 we show the results of solving the initial-value problem (2.1), (2.2) and the 
Goursat problem (2.30). 

3. Numerical integration of the full shallow-water equations 
In order to verify the results presented in $2, we simulated the full two-directional 

shallow-water equations (2.1) and (2.2) numerically. This simulation involved the use 
of a second-order-accurate finite-difference scheme with a variable spatial mesh. 



Rejiections from solitary waves in channels 1 1  

Position 

25 
101 
202 
308 
372 
432 
490 

X Depth 

0.976 
0.901 
0.803 
0.693 
0.637 
0.578 
0.521 

Analytical 

3.05 
2.99 
2.90 
2.80 
2.74 
2.67 
2.61 

= 8  370 h f x  ( Numerical 

2.99 
2.92 
2.84 
2.73 
2.66 
2.58 
2.51 

Percentage 
error 

1.97 
2.34 
2.07 
2.50 
2.92 
3.37 
3.83 

TABLE 1. Comparison of the numerical right-going mass flux and the analytical 
right-going mass flux 

All the numerical results presented here use 8 = &, a = &, ?lo = 1.15, h, = 1, 
h(z )  = 1 -€ax, h, = g, zf = 512, At = 0.075 and 

chosen so that Ax$/At is the speed of the solitary wave. 
Since the analysis depends heavily on the mass-flux requirements, we first checked 

the right-going and total mass-flux laws at various stations between x = 0 and 
z = xf(hf = t).  The results of the comparison of the numerical and analytical right 
going mass flux are given in table 1. 

In  table 2, we display the numerical results for the integrated mass flux 

and the increment 

as function of 8- ,  0 < 8- < 1400 for several stations z. The negative characteristic 
8- = 1200 is the one which passes through the intersection of 8, = 0 and z = 512, 
h(512) = f. This would be the last characteristic on which information is carried back 
if the transition along 8+ = 0 between right- and left-going flow components was 
sharp. In fact, the transition is described by an Airy function (Knickerbocker & 
Newel1 1980) and occurs over a width of a-f times the width of the solitary wave. 
Indeed we shall see in table 3 this is the width of the transition along 0- = 1200. 
Note that the data is consistent with our picture that the reflected wave 
generated along 8, = 0 between 8- -A8- and 8- is carried back through this 
tube. In particular, both m(z ,8 - )  and Am(z,8-) are independent of z to within 
the order of approximation of (2.3) (approximately 3 yo). Moreover m(z, O - ) ,  
0 < 8- < 1200 is precisely the total right-going flux at  the station at which 
the curve t+S,” ( d z / d h )  = 8- meets 8+ = 0 and would be the total mass flux if 
the depth were to become constant after this point. We emphasize that the reflection 
is generated all along 8+ = 0. In order to make sure that the discontinuities in 
h(z)  at x = 0 and x = 512 play no significant role, we repeated the calculation 
with a cubic shaped bottom. 

Table 3 displays the incremental mass flux Am@, t )  = m(x, t )  -m(z,  t -  1.5) for 
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z... -9.9 
h(s) ... 1.00 

e- 
1400 2.55 

0.00 
1300 2.55 

0.00 
1200 2.55 

0.04 
1100 2.60 

0.04 
to00 2.64 

0.04 
900 2.68 

0.04 
800 2.72 

0.04 
700 2.76 

0.04 
600 2.80 

0.04 
500 2.84 

0.04 
400 2.88 

24.8 
0.98 

2.55 
0.00 
2.55 
0.00 
2.55 
0.04 
2.59 
0.04 
2.63 
0.05 
2.68 
0.04 
2.72 
0.04 
2.76 
0.04 
2.80 
0.03 
2.83 
0.04 
2.87 

101.3 
0.90 

2.53 
0.01 
2.53 
0.00 
2.53 
0.04 
2.58 
0.04 
2.62 
0.05 
2.67 
0.04 
2.71 
0.04 
2.75 
0.04 
2.79 

202.1 308.4 371.4 432.0 487.6 547.5 
0.80 0.70 0.04 0.58 0.52 0.5 

2.52 2.50 2.49 2.49 2.48 2.48 
0.01 0.00 0.00 0.00 0.00 
2.51 2.50 2.49 2.49 2.48 
0.00 0.00 0.01 0.00 0.01 
2.51 2.50 2.50 2.49 2.49 
0.05 0.05 0.05 0.05 
2.56 2.55 2.55 2.54 
0.05 0.05 0.04 
2.61 2.60 2.59 
0.04 0.04 0.05 
2.65 2.64 2.64 
0.05 0.05 
2.70 2.69 
0.04 0.04 
2.74 2.73 

TABLE 2. This table gives the mass flux and change in the mass flux at various positions in the 
x, 8- plane. Within each entry of the table the top number is the total mass flux measured along 
a constant z from t = --co up t o  tha t  left-going characteristic 8- = t+jezh-:(r)dr. The bottom 
number is the mass flux measured between two consecutive left-going characteristics listed on the 
table. 

x = 371.5. Note the solitary wave, the right-going shelf, the oscillatory tail, the long 
reflection and the sharp drop a t  the last negative characteristic 6 -  = 1200. Table 4 
is a comparison at several stations x of the times t = 1200-~02 (dz/z/h) and the times 
in the numerical experiment at which the increment in the reflected mass flux 
decreased by a factor of 2. 

We also checked various components of the analytical solution against the 
numerical results. First, we compared the maximum horizontal velocity of the 
analytical solitary wave (max (u,(x, t ) )  = hoh-i(z))  against the maximum horizontal 
velocity of the numerical solitary wave. The results of this comparison can be found 
in table 5. 
' A graphical representation of the comparison between the numerical and analytical 
solitary waves at t = 500 can be found in figure 5. We also checked the analytical 
predictions of the horizontal velocity for the right shelf against the numerical 
experiment. The results of this comparison can also be seen in figure 5. Except for 
a slight phase shift (less than 5 %), i t  can be seen that the analytical predictions and 
the numerical results for the right-going flow are very close. 

The numerical evidence supports our theoretical picture which asserts that the 
right-going flow component is described by the perturbed Korteweg-de Vries 
equation (2.8) and the left-going flow component is found by solving the Goursat 
problem (2.30). While Table 2 showed clearly that the incremental mass flux carried 
through the tubes (0- -A0-,  0 - )  is constant in z, we would like to verify (2.22) along 
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Time 

423.0 
424.5 
426.0 
427.5 

429.0 
430.5 
432.0 
433.5 
435.0 

436.5 
444.0 
451.5 
459.0 

465 
570 
666 
787.5 

796.5 
851.0 
948 

Maw flux 

Solitary wave 
0.04 
1.78 
1.98 
2.09 

Right-going shelf 
2.22 
2.37 
2.52 
2.63 
2.68 

Oscillatory tail 
2.67 
2.66 
2.65 
2.65 

Left-going reflection 
2.65 
2.60 
2.56 
2.50 

No further reflection 
2.49 
2.49 
2.49 

Change in maw flux 

-0.04 
- 1.74 
-0.20 
-0.11 

-0.13 
-0.15 
-0.15 
-0.05 
-0.05 

0.39 x 
-0.18 x 10-2 

0.85 x 
0.11 x 10-2 

0.91 x 10-8 
0.69 x 
0.70 x lowa 
0.73 x 

0.26 x 

0.40 x 10-5 
0.20 x 10-4 

TABLE 3. Table 3 presents the mats flux and the change in the mass flux measured along a constant 
x (x = 371.5) at various times. The first column gives the time units (note the difference in the 
timescales between the various sections), the second column represents the total mass flux measured 
at x = 37 1.5 up to the given time and column 3 gives the mass flux measured only over the previous 
1.5 time units. 

X 

24.8 
101.3 
202.1 
308.4 
371.4 
432.0 
487.6 

h ( 4  
0.98 
0.90 
0.80 
0.70 
0.64 
0.58 
0.52 

Analytic 
time 

1175 
1096 
987 
864 
787 
709 
634 

Numerical 
time 

1180 
1101 
991 
867 
79 1 
714 
633 

TABLE 4. Comparison at various depths of the analytical and numerical times at which no further 
reflection is measured. The analytical time is calculated from t = 1200-~,Zhf(r)dr, while the 
numerical time is given as the time at which the change in the mass flux decreases by a factor 
of 2. 
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Numerical 
position 

10.4 
99.3 

211.9 
317.8 
417.6 
509.7 

Analytical 
Depth &I: h - W  
0.99 1.79 
0.90 2.05 
0.79 2.50 
0.69 3.08 
0.59 3.86 
0.50 4.05 

Percentage 
Numerical error 

1.76 1.5 
1.96 4.4 
2.37 4.9 
2.93 5.0 
3.69 4.4 
4.76 4.0 

Table 5. Comparison of the maximum analytical horizontal velocity and the maximum 
numerical horizontal velocity at various positions 

Position x 

FIGURE 5. This figure shows the comparison between the numerical right-going flow (-O-) and the 
analytical right-going flow (-) versus the spatial coordinate x at time t = 500. Both curves were 
scaled by taking the square root of the normalized value. 

each negative characteristic individually. This is not possible to do using the results 
of the first numerical scheme because even though the mass flux data is accurate, 
the pointwise date is not sufficiently good. Accordingly, we solved the Goursat 
problem defined by (2.30) numerically and found: 

(1) n-+hiu- is independent of time along a constant x (2.31): 
(2) hu- and n- ( (2 .22a,b)  respectively) are constants along left-going 

(3) the reflected mass flux is given by (2.28). 
We first checked the mass flux j 

characteristics ; 

hu- dt given by the numerical experiment against 
(2.28) and found close agreemen6%he relative error was much less than 1 yo for all 
cases. 

We next checked the constancy of n-+hfu- along a constant x. Because n- and 
hfu- are of the order of eu and their individual time derivatives are of the order of 
e2u2, we must show that the time derivative of the sum is small with respect to e W .  
The numerical experiments showed that the average of the gradient of n- + hfu- was 
of the order of g3u3. These results are shown in table 6. 
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X E U  

a 
at 
-(n-+hf-) 

25.6 0.95 h 7.5 x 10-0 6.4 x lo-@ 
25.6 0.90 E h  6.0 x 5.1 x 
25.6 0.80 A 4.8 x 10-7 4.0 x 10-7 
25.6 0.70 & 1.6 x 1.8 x 10-e 
25.6 0.65 m 2.6 x 10-6 6.2 x 10-e 

TABLE 6. A comparison of a(n- + h k ) / a t  and ( E O ) ~  for various eu 

E U  

4.8 x 10-7 2.1 x 10-7 2.3 x 10-7 
E k  6.0 x 2.4 x 2.4 x lo-@ 

7.5 x 10- 4.6 x 10-@ 4.3 x 10-0 
i& 9.3 x 10-10 8.0 x 10-lo 7.6 x 10-lo 

ib 

A2 

TABLE 7. A comparison of the changes in hu- and n- with for various slopes BU along 0- = 101 

We also checked hu- and n- along negative characteristics ((2.22a, 13) respectively) 
and found that the changes in hu- and n- along negative characteristics were of the 
order of 8d. Table 7 contains the results from various cases checked along a typical 
8- characteristic. 

Note added in proof. If, in table 2, we had used the exact conservation law given 
by (2.2), we would find that 

03 

S_m(n++u2) dt 

is independent of x to an accuracy of less than 1 yo. 
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